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1 Deriving van der Waal’s Equation (Part 3)

1.1 Bound on «

Last time, we had a quantity « which depended on various factors. We bounded it by a
term «(m,r,e) which only depended on these 3 quantities. We will compare this to the

integral [ = [¢".
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1.2 Maximizing the entropy term

Now consider maximizing

Wing) ™ [Hows 1 - p) + 102,
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where v = Sa(m,e,r)/e* = (B/e*)(a+ O(em/r)). Now, we want to try to maximize this
over p € Q, with |p| = N,,/m? (recall N,,/n — ¢3/v as n — o0). We can also write this

expression as
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where f,(z) = H(z,1 —z) +y2? for 0 <z < 1.
What does f, look like? Here is a picture:
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There is a critical value of v which is the largest v for which this is still concave. Check
using calculus that the critical v equals 2.
If v <2, f, is concave, so Jensen’s inequality gives
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We can make this close to tight by taking py ~ 3 /v for all k.
What if v > 2?7 Use the concave envelope F, of f:
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as n — oo. This also can be brought as close as we like once n — oo and m is large.



e If e3/v ¢ (a,b), then F,(e3/v) = f,(e3/v). Then just take pj = 3 /v for all k.

o If a < &3/v < b, then pp ~ &3 /v for all k will give you
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Instead, express €3 /v = ta + (1 — t)b. Now choose the values pj so that py ~ a for
~ t|Cy| many ks and py ~ b for ~ (1 — t)|C,,| many ks. Then
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The conclusion is that

as n — oQ.

1.3 Maximizing the effective partition function

Is the maximization problem for log 2}; close to the same value? Yes!
Go back to

wax fw(o) - 5#0 |

|p|=Np /m? n’

Can we get this close to the same value? Yes. Since f, is strictly convex near a and b, we
must have roughly a t fraction of ps close to a and roughly a (1 — t) fraction of pgs close
to b
When is the above maximum close to the average of f,7 We had the bound via AM-GM:
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This is small if p ~ p; for most pairs (k,?) where ¢"(¢(k — £)) is not negligible. What
kinds of p achieve all these requirements? Choose it according to this picture:
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Then we do get
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We will finish off this story next time
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